
Timothy Machnacki (tmachnac)
EECS 481: Software Engineering W22
22 April 2022

HW6b: Contribution

1. [Name and Email Ids]
Timothy Machnacki (tmachnac)

2. [Selected Project]
Zulip is an opensource chat-messaging application similar to Slack, Discord, or
Microsoft Teams. Zulip’s primary website and available downloads can be found at
https://zulip.com/ and the repositories can be found at https://github.com/zulip. Like
the other aforementioned messaging apps, Zulip is designed for communities,
companies, or organizations; these groups need a way for members to stay up to date
and collaborate remotely. Zulip is unique in that it offers subdivided topics within
streams (the equivalent of a channel or a team). The Zulip project is subdivided
among smaller projects such as the main Zulip app, the Zulip API, and the Zulip
mobile apps. Zulip utilizes a Python(Django) backend, Tornado for synchronous
event updates, a JavaScript frontend, as well as a React Native mobile app. I was
originally going to contribute by adding a feature in the main app that allowed a user
to unsubscribe an entire group from a stream. When this proved to challenging, I
decided to implement a cryptocurrency bot in the Zulip API instead.

3. [Social Good Indication]

This project is not a contribution to Social Good.

4. [Project Context]
Zulip is an open-source chat application that rivals apps like Slack and Discord. Zulip
is mainly designed for larger businesses and organizations, similar to Microsoft
Teams. As per their website, “Zulip combines the immediacy of real-time chat with
an emil threading model. With Zulip, you can catch up on important conversations
while ignoring irrelevant ones.” Zulip aims to increase productivity by allowing users
to quickly find relevant updates. Stream filtering is one main feature that is conducive
for a more streamlined feed. Stream filtering breaks chat streams down into sub-
categories and allows users to even search streams using keywords. This allows users
to stay up to date with relevant information while ignoring the extra noise. It is
features like these that separate Zulip from the competition.

5. [Project Governance]

https://zulip.com/
https://github.com/zulip

The vast majority of communication among contributors and developers is done
through the project’s own zulip server at chat.zulip.org. There is a myriad of streams
to help developers and discuss project management and development. Furthermore,
there are stream specifically for helping new contributors such as “development
help”, “provision help”, and “new members”. Additionally, communication on the
server is relatively informal; anyone is welcome to communicate their comments,
questions, and concerns, and in my experience, everyone was friendly and open to
helping answer any questions. There are many pre-existing sources to help new
developer get up to speed with the project. For example, there is detailed
documentation on setting up a development environment for testing and the directory
structure of the project to help contributors locate relevant files. Additional
communication occurs directly through github pull requests and open issues. Anyone
can claim an issue by @-mentioning zulipbot under an open issue. However, you can
always free up the issue, and if no pull request is submitted within 14 days, the issue
is reopened for everyone else.

As far as QA structure and guidelines, the process is relatively straightforward. There
are many pre-built tools to assist in the QA process. In my case, I was writing to the
python-zulip-api repository. To set up a working environment, I built a clean virtual
environment using the “tools/provision” script in the repository. I followed the guide
for “writing bots” in the API documentation. Developers are encouraged to follow the
existing framework for new bots and their relevant unit tests. I used the existing
pytest framework to run my unit tests against my new code. After passing the test
cases, I ran the provided linters on my code to adhere to Zulip’s style conventions.
Upon submitting a pull request, the code must be reviewed by at least one core
developer / maintainer. Furthermore, the changes will be run through three
Continuous Integration (CI) builds before the changes are accepted.

6. [Task Description]

As mentioned earlier, I originally planned to implement a feature which allowed users
to unsubscribe entire groups from stream – at the time of writing this, you must
unsubscribe each member individually. After 6+ hours of research and documentation
reading, I was not really sure where to even begin. I realized I would have to write
additions to the database model, acquire special permissions, backend tests, frontend
tests, and several files in the frontend, backend, and middleware. Thus, I deemed this
project too daunting to undertake, and pivoted to implementing a bot in python-zulip-
api repository. This repository was much less dense, and there were examples of bots
and unit tests I could go off of. My bot fetches data from the Coinbase API to return
market price information for a specified cryptocurrency. Additionally, users can
supply a date argument to get back the market price for a cryptocurrency on said date.

Given the rising relevance of cryptocurrency, I thought this would be a neat bot to
have during small-talk stand-ups or other conversations. I followed the existing
“BotHandler” framework to implement my bot and followed the unit testing
framework to write my test cases. Additionally, I had document the usage and
purpose of the bot, and I had to write fixtures (JSON) that the testing modules could
use to mock http requests and responses.

7. [Submitted Artifacts]

Below are screenshots of the artifacts I submitted @ https://github.com/zulip/python-
zulip-api/pull/753/files:

Bot Implementation:

https://github.com/zulip/python-zulip-api/pull/753/files
https://github.com/zulip/python-zulip-api/pull/753/files

Doc.md (documentation)

Unit Tests:

Example Fixture:

Pull Request: https://github.com/zulip/python-zulip-api/pull/753

https://github.com/zulip/python-zulip-api/pull/753

8. [QA strategy]
Communication:

- Any questions or concerns about contributing to the project were addressed in
the Zulip development server (development help specifically). I also found
solutions to issues I was having by filtering channels.

Code Review
- Every pull request must be reviewed by a core developer / maintainer of the

project. They provide feedback and make sure the code is up to the project’s
standards.

Maintainability and Readability:
- I spent a large portion of my time reading through existing code and

documentation to ensure that my code followed desired structural and style
guidelines. Modelling my implementation after existing frameworks would
make it easier for future developers to understand and ensure that any
additions integrated well within the existing project structure.

- While not explicitly required, it is highly recommended that new contributions
be run against linters to enforce style guidelines. I was having trouble running
the existing linting script but was able to run each linter in the script on its
own. Some linters include pycodestyle, flake8, and mypy. Linting is a great
static analysis tool that can improve code’s readability.

Unit-Testing:
- As per the API documentation, bots should have their own self-contained unit

tests. These unit tests follow a framework laid out in “test_lib.py”. Each bot
should have a corresponding test<botname> class containing unit test
methods. Additionally, the framework utilizes JSON fixtures to supply
mocking information to the mock_http_converstion method. This is done to
avoid unnecessarily loading third-party APIs during testing.

- While not explicitly required, developers are encouraged to run static analysis
coverage metrics to ensure the adequacy of the unit tests. I was able to achieve
100% statement coverage with my unit tests.

Integration Testing:
- After implementing code changes, developers should run the full test suite

with pytest to ensure changes don’t break existing code.
- Pull Requests must pass through Travis CI integration tests which runs a build

of the entire project. This is done to ensure that nothing has broken before
pushing code.

9. [QA Evidence]
CI Build:

Linting:

Coverage:

Pytest Suite:

10. [Plan Updates]
It is safe to say that the reality of my open-source contribution did not align with my
initial plans. I originally anticipated only spending around 6 hours in preliminary
research for my original task which was to implement a feature that required
extensive work in all parts of the full stack of Zulip’s application. It took me around
five hours just to realize that I would need way more time to be able to finish my
initial task. Thus, my initial sprint board did not reflect the actual allocation of my
time since I would no longer be implementing features across the full stack. Below is
a more refined time log:

Time Logging (in man-hours)
Preliminary research: ~15 hours

• 3 hours familiarizing myself with Zulip
• 4 hours reading through new contributor documentation
• 5 hours reading through and studying architecture and directory structure for

Zulip’s main web application.
• 3 hours reading through and studying Zulip’s python api repository.

Planning and Implementation: ~11 hours

• 2 hours configuring local development setup/environment
• 2 hours reading existing code to understand framework and expectations of

new features
• 1 hour to plan out implementation using API documentation and existing code

as a guide.
• 2 hours implementing bot
• 2 hours writing unit tests
• 1 hour testing and linting
• 1 hour finalizing code submission

Report:

• 1 hour reviewing requirements and reviewing examples
• 4 hours writing report

11. [Experiences and Recommendations]

The learning curve of the real world.
There is no way to sugarcoat the fact that working with software at the industry level
is vastly different from we students’ experiences in most computer science courses. I
can recall only one or two projects from academic career that exceeded over about
1,000 lines of code; furthermore, the largest group I ever had to work with was five
people. On the other hand, a project like Zulip has thousands of source files and

hundreds of thousands of lines of codes. This is still relatively small in comparison to
tech giants like FANG companies who work with repositories containing millions of
lines of code. Moreover, operating within a five-person group is much different than
working on an open-source project which has essentially endless contributors; it also
differs from a typical closed-source company in which there are hundreds of
employees.

Thus, it follows that the hardest part of taking on an endeavor in the world of
software engineering is often figuring out where to even begin. Zulip fortunately puts
forth an earnest effort to provide useful documentation, and they include guides for
writing new documentation in their contribution guidelines. Zulip’s wiki docs
contained hundreds of pages for everything from Git Flow to outreach programs.
Thorough documentation is especially important for new onboarding hires or first-
time contributors in this case. Thankfully, Zulip’s documentation is detailed and easy
to follow in this regard; they have several pages dedicated to helping new
contributors. I found that I was able to work through local development setup with
relative ease. Zulip’s docs laid out examples of launching the dev environment on
different operating systems. Furthermore, Zulip has put a lot of thought into their
scripts and tools (See below). Installing prerequisites and setting up a proper virtual
machine environment was as easy as running a couple executables in their tools/
directory. Subsequently, they have also put thought into explaining the architecture
and directory structure of the project. It is important to understand how different
components of the application work together before diving into writing code.

Working on a project with experienced developers can be intimidating. I find that I
am always hesitant to reach out for help because in fear of wasting some one else’s
time. However, I’ve found that everyone is more than happy to help. The Zulip
community development server was structured well so that I could ask for help in the
right places to get a response faster.

Parallels with internship experience
My experience with contributing to Zulip was awfully similar to my past internship
experience at Nexsys Technologies. To no surprise, the hardest part of my internship
was getting everything set up and working properly. I spent almost two weeks
working with developers to get my local development environment up and running. I
found that Zulip had more useful documentation for new contributors; the wiki pages
at Nexsys were slightly outdated and sometimes included deprecated requirements.
Furthermore, working in a closed-source company requires the acquisition of many
permissions. I found that I had to reach out to somebody new for just about every tool
that I needed to install on my machine. Nevertheless, having to familiarize myself
with the existing code base was a difficult and necessary preliminary step in both
cases. One thing that Nexsys offered which other projects/companies should consider
was “learn to code” sessions in which a senior developer delved into the details of the
implementation of a particular section of the code base.

Course concepts in practice
Often in computer science courses, we students are taught concepts deemed
fundamental to the field of computer science, but what we learned is only applied to
passing a rigorous exam (cough 203 cough) or small group project. It was rewarding
to see the concepts taught in this course are actually relevant in the world of software
engineering beyond university. For example, this course stressed the fact that
maintenance comprised the majority of the software engineering process. Zulip, too
emphasized the importance of submitting code that was readable and maintainable.
They wrote many guidelines to ensure that new contributors had style suggestions to
follow to ensure that code changes were held to a high standard of readability.
Furthermore, the Zulip api docs contained examples of existing models and
frameworks so that new contributors could easily follow a similar structure. The api
docs on “writing your own bots” detailed how to use the BotHandler and how to
structure unit tests. These guidelines all contribute to a more maintainable code base.
Furthermore, Zulip laid out recommendations for commit messages and submitting
pull requests. These instructions also increase maintainability because future
contributors could more easily understand why changes took place. Zulip also put
quality metrics and static analysis tools covered in this class to use. Documentation
suggested that unit tests should strive for %100 statement coverage and code changes

were subject to linters as well as code review.

Recommendations
I would recommend abiding to a fifteen-minute-rule when delving into an open-
source project for the first time; if you are stuck on something for more than fifteen
minutes, go ask someone for help. This will save you a lot of time, so you can put
your efforts to actually contributing. As far as selecting a task to undertake, it will
inevitably be more work than you initially think. Thus, I would advise choosing a
project that uses tools, languages, frameworks, etc. that you are familiar with.

12. [Advice for Future Students]

This class has a deceivingly heavy workload, though it is not the kind of work CS
students are accustomed to. If you are taking this class because it is categorized as
having a low-moderate workload, I would see 493. Other classes don’t test your
ability to comprehend technical papers nor do they have as open-ended of project
specifications.

13. [Future Use of Material]
I am willing to allow future students to use my material.

