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Abstract 

Companies are greatly interested in public 
perception of the business or its actions, 
particularly whether that perception is 
positive perception. We create a tool that 
quickly allows a company to judge just 
that, providing sentiment analysis on 
Tweets in a recent timespan. First, we train 
multiple models, using combinations of 
features and machine learning classifiers 
to find which give the best performance. 
We also create a web application that 
retrieves tweets matching a query in a time 
frame and use our classifier to provide the 
sentiments of the tweets to inform 
company perception. 

1 Project Description 

1.1 Problem 

Our project is doing sentiment analysis on Twitter 
data to see how perceptions of a company change 
over time. This will allow us to see how positive 
events such as a product launch or marketing 
campaign or negative events such as data breaches 
affect the public conversation surrounding a 
company. 

Companies inherently have a strong vested 
interest in public perception, which would make 
an accurate sentiment analysis of public opinion 
to be of great practical use. How people view a 
company is a strong influence on how the 
company makes money and succeeds. Positive 
opinion: stocks prices go up, profit margin 
increases, and the company grows. Negative 
opinion: quite the opposite, money is lost, and the 
company stagnates. By being able to have a good 
judge of what kind of view the public has toward 
their business, companies can swiftly change 
course. If there is negative talk about the 
company, they can quickly change course to 
negate the damage. Or if there are positive 

sentiments about the company, they know that 
their actions are having positive impacts and to 
keep up the same trend. 

Other than general, longer-term scales in 
company perception, businesses also would be 
interested in shorter term public responses to 
recent events. For example, companies could use 
our model to see how a particular marketing 
campaign is doing, whether the public likes a new 
logo, and more. Let’s look at a specific case. 
Suppose Apple has just released the latest iPhone 
and they want to see what people think about it. 
One option is that the company can waste money 
conducting expensive public surveys which can 
take a lengthy time before the results and a wide 
view of public sentiment will even be determined. 
Or then can quickly use our model and see the 
latest tweets about the company and product and 
whether they are positive or negative.  Our project 
will also be of potential use to others who are 
doing market research, such as those in academia 
and government organizations. 

1.2 Proposed Solution 

To meet this much needed demand, we build a 
program that utilizes the Twitter API to gather 
tweets about a given company over a given period 
of time, then uses a machine learning model to 
classify these tweets as positive or negative. We 
will then be able to see how the number of 
positive and negative tweets changes over time 
and thus gauge public sentiment about the 
company. 

Because social media platforms like Twitter are 
so popular, there is robust prior research in related 
fields such as NLP and sentiment analysis. This 
research includes a 2017 study that sought to 
gauge specific Twitter users’ opinions on 
companies and brands using a collection of their 
Tweets, among other relevant works. We plan on 
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using aspects of these studies in our own work 
when relevant and feasible. 

After researching which dataset best fit our 
needs to train the model, we decided that the 
Sentiment140 dataset from Kaggle was the best 
option. This is because Sentiment140 contains 
Tweets about a broad range of products, brands, 
and companies, so our model will work for a wide 
range of subjects. In addition, Sentiment140 is 
massive (containing 1.6 million Tweets) so our 
model should be fairly accurate after training on 
it. 

There will be two main aspects to our project: 
training the classifier using Sentiment140 and 
retrieving and classifying Tweets from both the 
Twitter API and from company-specific Twitter 
datasets (such as the Kaggle datasets for US 
Airline sentiment). 

To train the classifier, we preprocess the 
Sentiment140 dataset by tokenizing it in a Twitter-
specific manner, removing punctuation and stop 
words, and apply stemming We will test all 
combinations of features and a classifier in our 
model to see which one yields the best results. For 
features, we will explore building matrices from 
tf-idf values, raw term frequencies, and BERT 
embeddings to take advantage of deep learning. 
Next, we will use this matrix to train a variety of 
classifiers such as Naïve-Bayes, Linear SVM, and 
Logistic classification. Finally, we will use 
whichever combination performs the best when 
classifying Tweets. 

After our model is complete, we will build a 
web application that, given a query and a 
timeframe, retrieves Tweets from the Twitter API 
and measures the sentiment of those Tweets using 
our model. Given our current API license, our 
system will only be able to gauge sentiment from 
the last 7 days, which should still be of great use 
to companies and other interested parties. Our 
project will present its results in a neat graphical 
format that will make human interpretation easy 
and paint a clear picture of company perception. 

2 Related Work 

 Alongside the rise in popularity of micro-
blogging platforms and social media, sentiment 
analysis too has become a topic of increased 
interest in machine learning and the NLP research 
space as a whole. There has been substantial prior 
research in sentiment analysis, especially in 
domains consisting of larger content such as 

movie reviews, product reviews and blog posts. 
More recent advancements in sentiment analysis 
have shifted focus to analyzing platforms like 
Twitter in which posts contain less content. 
Furthermore, micro-blogging platforms often 
contain less grammatically accurate language, 
slang, and the use of emotes and hashtags, 
presenting new challenges to language processing. 

A paper from the Department of Computer 
Science at Cornell University in 2002 analyzed 
the effectiveness of three machine learning 
techniques on the IMDb archive of movie 
reviews: Naïve Bayes, maximum entropy, and 
support vector machines. The findings showed 
that the three models were able to achieve 81%, 
80.4%, and 82.9% accuracy respectively on 
unigrams (Pang, Lee, 2002). 

Building off the Cornell study, in 2009 a team 
from Stanford University analyzed the sentiment 
of tweets in relation to a query term. They 
compared different machine learning algorithms 
(Naïve Bayes, maximum entropy, and SVM) 
using different features (unigrams, bigrams, both, 
and parts of speech). For training data, they used 
tweets that contained emoticons like ‘:)’ or ‘:(‘, 
labeling those tweets as positive or negative 
respectively. They found this training on 
emoticons to be an effective method for distant 
supervised learning. This data was compiled in the 
Sentiment140 dataset (Go et al., 2009). 

From the University of Indonesia in 2015, 
researchers used Twitter data to analyze sentiment 
toward mobile phone providers. They compared 
Naïve Bayes against decision tree and SVM 
classifiers, finding, as previous studies had, that 
SVM performed the best. Using sentiments of 
tweets, they measured Net Brand Reputation to 
measure customer loyalty. They found that XL 
Axiata had the best reputation out of the 
companies they analyzed. They also created a live 
dashboard of this NBR score along with common 
keywords in tweets to help the Mobile Phone 
Providers keep track of how the public perceived 
their companies (Vidya et al., 2015). 

In 2015 Kharde et. Al with the University of 
Pune conducted an analysis of various methods 
for sentiment analysis. In addition to the typical 
machine learning approaches, they also evaluated 
lexicon-based approaches including those based 
on WordNet  and corpus-based methods based on 
Latent Semantic Analysis. These were found to 
give fairly high accuracy in some cases and don’t 
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heavily rely on human labeled data. They also 
found that bigram features tend to work best 
compared with other features (Kharde et al., 
2015). 

More recently, in 2017, researchers attempted 
to analyze the opinion of Twitter users towards 
different industries and consumer brands by using 
sentiment analysis of their tweets. They used a 
Long Short Term Memory implementation of a 
Recurrent Neural Network. Moreover, they 
analyzed the opinion of 19 million Twitter users 
towards 62 popular industries, consisting of 
12,898 enterprise and consumer brands, totaling a 
dataset of 330 million tweets over one month. 
They found that users tend to feel most positive 
towards manufacturing and most negative towards 
service industries. They also concluded that users 
tend to be more positive or negative with regards 
to a brand than in other niche spaces on Twitter 
(Hu et al., 2017) 

Lastly, a group of researchers from the 
Association for Computational Linguistics 
analyzed target-dependent Twitter sentiment 
classification in 2011. Different from other 
sentiment classification approaches, they used a 
target-dependent system in which they considered 
subjects of tweets that were implicitly related to a 
company. According to their experimental results, 
target-dependent classifiers significantly 
outperformed previous target-independent models. 
Furthermore, they utilized a graph-based 
optimization approach to take tweets related to a 
given tweet into consideration. They found that 
graph-based optimization significantly improves 
sentiment analysis as well (Jiang et al., 2011). 

3 Data Selection 

In our preliminary search for datasets of Tweets, 
we looked for two main criteria: Tweet sentiment 
must be target-dependent as well as effectively 
annotated and preprocessed. We included only 
datasets with target-dependent sentiment 
annotation to align with the aim of our overall 
project, which is of course to perform Tweet 
sentiment analysis based on a query. Additionally, 
it was important to us that candidate datasets were 
annotated well with clear and accessible methods 
to indicate polarity. 
Based on these principles, our research led to a 
handful of strong potential datasets divided into 
two categories: 

1. Sector or company-specific Twitter 
sentiments such as select Kaggle datasets on 
US Airlines and Apple Computers 

2. Broader Kaggle datasets containing 
Twitter sentiments across a multitude of 
products, brands, and companies 

3.1 Sentiment140 

For training purposes, we decided to utilize the 
second option of broader datasets including 
Twitter sentiments regarding multiple companies, 
specifically the Sentiment140 dataset on Kaggle. 
We reasoned that company or sector-specific data 
likely contains vocabulary and sentiment 
“buzzwords” more specific to that company or 
industry than others. Seeing as our project goal is 
to allow for users to query across sectors, 
products, and companies, we believe the larger, 
more general Sentiment140 dataset provides the 
most appropriate data. 

In addition, several aspects of the 
Sentiment140 dataset make it advantageous for 
our purposes. First, it is significantly larger than 
the narrower datasets, containing 1.6 million 
Tweets compared to the ~3800 and ~14,600 
Tweets contained in the Apple Computers and US 
Airlines datasets. We believe this gives us a 
greater ability to evaluate sentiment of Tweets 
from a wide range of queries. 

Moreover, the Tweets contained in 
Sentiment140 are each annotated with polarity 
ranging from negative (0) to neutral (2) to positive 
(4) with respect to a query term, and the dataset is 
in *.csv format with fields including target 
(polarity), Tweet ID, Tweet timestamp, query, 
Tweet owner, and Tweet ext. These attributes all 
fit our needs well regarding training our model. 

One typical example from our dataset is the 
following entry:  

 
[0, 2055843801 Sat Jun 06 10:03:24 PDT 
2009, NO_QUERY, EmptyIsAwesome, 
@google Why does it take so long to get a 
check from you? You're like the alcoholic 
Uncle that mails my bday check 2 weeks late].  
 

This data point is a prime candidate for training 
our system. We see a customer’s apparent reaction 
to the company Google with a negative sentiment 
label. Due to the meticulous data parsing, 
datapoints like these are easily integrated into our 
system. 
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Figure 1: Classification system pipeline 

 

3.2 US Airline Sentiment 

Though we have selected the broader 
Sentiment140 dataset for training purposes, we 
believe the sector and company specific datasets 
are still valuable for our project. To simulate 
domain-specific testing (such as tweets about a 
specific company, product, or industry), we utilize 
the US airline twitter sentiment dataset. This 
dataset contains around 14,000 tweets already 
annotated with various fields like id, sentiment 
label, target airline, username, tweet text, etc. For 
our purposes, we only use the text and sentiment 
label fields. A typical example is as follows: 

 
[…, negative, …, Virgin America, …, jnardino, 
…., @VirginAmerica seriously would pay $30 
a flight for seats that didn't have this playing.] 
 

For additional processing, as sentiment is labeled 
with a string, we convert this to numerical values: 
0 for negative, 2 for neutral, and 4 for positive. 

4 Methodology 

At a high level, the end goal of our program is to 
take a user query consisting of a company name 
or product, retrieve relevant tweets over a certain 
time frame, and then classify the tweets as 
positive, neutral, or negative so that we can see 
how the perception of the target changes over 
time. The formulation and execution of our 
system can be divided into three core components: 
the training of our machine learning model, 
testing, and the retrieval and classification of new 
tweet data via user-interface. 

4.1 Training and Model Selection 

As mentioned previously, we used the 
Sentiment140 dataset to train our system. 
However, we only used a subset of 4,000 tweets 
with an even class distribution so as not to skew 
evaluation metrics. Since BERT requires 
significant computing overhead, it was necessary 
to use a relatively small amount of training data 
for model selection. 

For preprocessing the data, we sequentially 
applied tokenization, stopword removal, and 
stemming. To do so we utilized Python’s NLTK 
library which provided useful methods. NLTK 
was able to specially tokenize “@” and “#” 
characters used for twitter handles and hashtags. 
NLTK also provided a straightforward stopword 

removal method as well as a Port Stemmer 
method. It is important to note that preprocessing 
was not used with BERT because BERT requires 
raw text for its own tokenization. 

Furthermore, we decided to implement three 
feature extraction methods: raw term frequency, 
tf-idf, and BERT embeddings. The raw tf and tf-
idf matrices were generated with sklearn’s 
CountVectorizer and TfidfVectorizer methods, 
respectively. We were able to generate a vanilla 
BERT model using PyTorch and HuggingFace’s 
transformers, as laid out in “A Visual Notebook to 
Using BERT for the First Time” and “Text 
Classification with BERT in PyTorch”. 

We then used the resulting matrices to train 
three classifiers: Naïve Bayes Complement, 
Linear SVM, and Logistic classification, each of 
which is provided by sklearn.  We then proceeded 
to use all combinations of feature extraction 
methods and classifiers with the exception of 
Naïve Bayes-BERT embeddings; negative 
embeddings prevent the model from working 
properly, and the Naïve Bayesian assumption of 
independence invariant would be violated, 
rendering the model inappropriate. 

It is here that we should note our shortcomings 
in working with BERT. We have written code to 
fine-tune and optimize BERT-Base on the 
Sentiment140 dataset using PyTorch, but we did 
not have the necessary computing power to run it 
readily available to us. Furthermore, we looked 
into alternatives such as using CUDA toolkit or 
PyTorch on a cloud computing resource such as 
AWS but lacked the resources and ample time to 
implement such features. Given the immense 
computing overhead required to use our own 
BERT implementation end-to-end, we resorted to 
using PySentimiento for testing and for our front-
end web application that necessitates rapid 
classification based on user input. PySentimiento 
is a library with a pre-trained BERT model for 
sentiment analysis of tweets, generated using 
similar methods as we would have done given 
more computational resources and time. 
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Figure 2: This graph shows average sentiment by date  
given query "nestle" and period of one week 

 

 

Figure 3: This graph shows the accuracy of feature 
extraction and classifier combinations over a subset 
of the training data 

 

4.2 Testing and Evaluation Methods 

We used 5-fold cross-validation to evaluate the 
performance of  combinations of feature 
extraction methods and classifiers on a 4,000-
tweet subset of the training data. Furthermore, we 
used accuracy as our preferred metric; accuracy is 
an appropriate metric in this case since there are 
even class distributions in the training data.  
Following the training of our system and 
evaluation of our systems on the training data, we 
used a 2,000-tweet subset of the US airline dataset 
to evaluate performance on new domain-specific 
tweets. We measured the performance of a term 
frequency-Naïve Bayes model and PySentimiento 
and generated results in a formatted table. 
PySentimiento performed multiclass classification 
(0-negative, 2-neutral, 4-positive), and Naïve 
Bayes performed binary classification (0-negtive, 
4-positive). We used F1-score as the preferred 
performance metric in this case due to the uneven 
class distribution in the subset of test data. 
Following our evaluation, we have the optimal 
system to use for our front-end web application. 

4.3 Application 

After our model evaluation, we used Flask to 
build a web app with a user-friendly interface. 
After the user inputs a target query and a 
requested time frame, the application retrieves 
relevant Tweets via the Twitter API and classifies 
them. Subsequently, the app uses the 
classifications to generate a line graph displaying 
the change in sentiment over the requested time 
period. An example of such a generated line graph 

is displayed in Figure 2. The application can also 
display graphs depicting tweet counts by category 
(positive, neutral, negative) and tweet counts by 
date. Given our standard API license, our system 
can only use tweets from the last 7 days, which, 
while less than ideal, nevertheless is still valuable 
to companies.  

5 Results 

The results from our 5-fold cross-validation 
evaluation on training data are displayed in Figure 
3 below: 

From the graph displayed above, it is evident that 
models using BERT embeddings clearly 
outperformed those using raw term frequency or 
tf-idf for feature extraction. The best performing 
model, yielding an accuracy of 0.76, utilized 
BERT embeddings in conjunction with the logistic 
model. However, BERT embeddings and a linear 
SVM classifier yielded an accuracy of 0.74 – only 
a difference of 0.02. The lowest performing model 
consisted of raw term frequency in combination 
with a linear SVM classifier, yielding 0.67 
accuracy. Similar to BERT models, tf and tf-idf 
models’ accuracy varied by at most 0.02 when 
paired with different classifiers. This suggests 
feature extraction methods contribute to a 
system’s performance more than the classifier.   

Figures 4 and 5 display the results from testing 
a tf-Naïve Bayes system and PySentimiento on 
2,000 tweets from the US airline dataset, 
respectively. While not a perfectly designed test, 
we can still expect relatively similar results in 
other domain-specific applications as this 
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Figure 4: This table shows Naive Bayes' 
performance on 2,000 tweets from the US airline 
dataset 

 

 

Figure 5: This table shows PySentimiento's 
performance on 2,000 tweets from the US ariline 
dataset 

 

simulates the retrieval process for getting new 
tweets about a specific topic which the models 
were not trained on. Looking at the macro-
averaged F1-scores for each system, we can see 
that PySentimiento outperforms Naïve Bayes 0.75 
to 0.54. Though a less relevant metric due to the 
class imbalances, PySentimiento also 
outperformed Naïve Bayes with respect to 
weighted average as well. 

It is interesting to note that both systems 
performed best on negative tweets and performed 
significantly worse on non-negative tweets(i.e., 
positive or neutral). Naïve Bayes produced an F1-
score of 0.62 for negative tweets and only 0.45 for 
positive tweets. Moreover, PySentimiento 
produced an F1-score of 0.86 for negative tweets, 
0.60 for neutral tweets, and 0.79 for positive 
tweets. 

6 Conclusions 

6.1 Findings 

The first and foremost conclusion that can be 
drawn from our project is that BERT feature 
extraction significantly outperformed other 
methods, while classifiers yielded similar results. 
Thus, we should expect to see companies and 
university courses adopt this cutting-edge 
technology if they have not done so already. In 

addition, our results suggest that our system had 
more difficulty correctly classifying positive and 
neutral tweets in comparison to negative tweets. 
One hypothesized reason for this could be that 
users may be more inclined to post about a 
negative experience with a brand or company. 
Consumers may treat a positive experience with a 
company or product as the status-quo and only 
take to Twitter to express their dissatisfaction 
when their expectations are not met. Furthermore, 
it’s possible that users may use stronger language 
when expressing negativity.  

6.2 Limitations 

Given we are all undergraduate students working 
from personal computers or laptops, there were 
limiting factors to a project of this degree of 
ambition. Firstly, we would have liked to use our 
own BERT-Base implementation from end to end. 
We believe running a more fine-tuned version of 
BERT over the entirety of our dataset would lead 
to better results. However, this would have taken 
far too long on our hardware and given time 
constraints we had to opt for alternative solutions. 
Furthermore, we were only granted a standard 
access level to the Twitter API. This only allowed 
us to retrieve tweets from the last seven days and 
also capped the amount of tweets we could 
retrieve. Ideally, our front-end application could 
display more tweets over a longer period of time 
such as a year or quarter to better represent the 
changes in sentiment. 

6.3 Future Work 

Firstly, our Flask application currently runs locally 
on our machines. The apparent next step is to host 
on it on AWS or another cloud service to 
potentially provide companies with a valuable 
resource. Once available in production 
environments, we could receive user feedback and 
iteratively update our application. 

Subsequently, we would like to evaluate the 
efficacy of our system after training on more 
domain-specific datasets. We used a broad-topic 
dataset, but individual companies would benefit 
from the ability to narrow down the domain space  
to more relevant tweets.  

Furthermore, we think it would be valuable to 
companies if we could expand our system to 
include posts from other media platforms. While 
Twitter is a user-dense platform that provides 
valuable information, it is a small subset of the 



7 
 
 

totality of microblogging content available on the 
internet. Our system could greatly be improved if 
we could perform similar sentiment analysis on 
YouTube video transcripts, YouTube comments, 
Instagram posts, Instagram comments, etc. 

Lastly, we think our system could be used to 
benefit more than just companies; we would like 
to expand our system to accommodate for public 
institutions such as universities or even 
individuals. 

7 Contributions 

First and foremost, all team members contributed 
greatly to the development and success of our 
system. As for the implementation of the system, 
Jasper and William spearheaded the training of 
our models. Alexander implemented the testing as 
well as the generation of graphs to display 
evaluation metrics and the performance of our 
models. Furthermore, Timothy and Evan worked 
in tandem to develop the Flask web application 
and front end. As for the poster and reports, we 
each took a section and helped with other parts of 
the assignments if needed. This group worked 
well together, and we are all satisfied with the 
efforts put forth from one another; not all group 
projects tend to go as smoothly. 
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