
1

Abstract

Companies are greatly interested in public
perception of the business or its actions,
particularly whether that perception is
positive perception. We create a tool that
quickly allows a company to judge just
that, providing sentiment analysis on
Tweets in a recent timespan. First, we train
multiple models, using combinations of
features and machine learning classifiers
to find which give the best performance.
We also create a web application that
retrieves tweets matching a query in a time
frame and use our classifier to provide the
sentiments of the tweets to inform
company perception.

1 Project Description

1.1 Problem

Our project is doing sentiment analysis on Twitter
data to see how perceptions of a company change
over time. This will allow us to see how positive
events such as a product launch or marketing
campaign or negative events such as data breaches
affect the public conversation surrounding a
company.

Companies inherently have a strong vested
interest in public perception, which would make
an accurate sentiment analysis of public opinion
to be of great practical use. How people view a
company is a strong influence on how the
company makes money and succeeds. Positive
opinion: stocks prices go up, profit margin
increases, and the company grows. Negative
opinion: quite the opposite, money is lost, and the
company stagnates. By being able to have a good
judge of what kind of view the public has toward
their business, companies can swiftly change
course. If there is negative talk about the
company, they can quickly change course to
negate the damage. Or if there are positive

sentiments about the company, they know that
their actions are having positive impacts and to
keep up the same trend.

Other than general, longer-term scales in
company perception, businesses also would be
interested in shorter term public responses to
recent events. For example, companies could use
our model to see how a particular marketing
campaign is doing, whether the public likes a new
logo, and more. Let’s look at a specific case.
Suppose Apple has just released the latest iPhone
and they want to see what people think about it.
One option is that the company can waste money
conducting expensive public surveys which can
take a lengthy time before the results and a wide
view of public sentiment will even be determined.
Or then can quickly use our model and see the
latest tweets about the company and product and
whether they are positive or negative. Our project
will also be of potential use to others who are
doing market research, such as those in academia
and government organizations.

1.2 Proposed Solution

To meet this much needed demand, we build a
program that utilizes the Twitter API to gather
tweets about a given company over a given period
of time, then uses a machine learning model to
classify these tweets as positive or negative. We
will then be able to see how the number of
positive and negative tweets changes over time
and thus gauge public sentiment about the
company.

Because social media platforms like Twitter are
so popular, there is robust prior research in related
fields such as NLP and sentiment analysis. This
research includes a 2017 study that sought to
gauge specific Twitter users’ opinions on
companies and brands using a collection of their
Tweets, among other relevant works. We plan on

Sentiment Analysis on Twitter Data Tracking Perceptions Over Time

Jasper Drumm, Timothy Machnacki, William Morland, Evan Parres, Alexander Pohlman

{jasperd, tmachnac, wmorland, evparres, aohlman}@umich.edu

2

using aspects of these studies in our own work
when relevant and feasible.

After researching which dataset best fit our
needs to train the model, we decided that the
Sentiment140 dataset from Kaggle was the best
option. This is because Sentiment140 contains
Tweets about a broad range of products, brands,
and companies, so our model will work for a wide
range of subjects. In addition, Sentiment140 is
massive (containing 1.6 million Tweets) so our
model should be fairly accurate after training on
it.

There will be two main aspects to our project:
training the classifier using Sentiment140 and
retrieving and classifying Tweets from both the
Twitter API and from company-specific Twitter
datasets (such as the Kaggle datasets for US
Airline sentiment).

To train the classifier, we preprocess the
Sentiment140 dataset by tokenizing it in a Twitter-
specific manner, removing punctuation and stop
words, and apply stemming We will test all
combinations of features and a classifier in our
model to see which one yields the best results. For
features, we will explore building matrices from
tf-idf values, raw term frequencies, and BERT
embeddings to take advantage of deep learning.
Next, we will use this matrix to train a variety of
classifiers such as Naïve-Bayes, Linear SVM, and
Logistic classification. Finally, we will use
whichever combination performs the best when
classifying Tweets.

After our model is complete, we will build a
web application that, given a query and a
timeframe, retrieves Tweets from the Twitter API
and measures the sentiment of those Tweets using
our model. Given our current API license, our
system will only be able to gauge sentiment from
the last 7 days, which should still be of great use
to companies and other interested parties. Our
project will present its results in a neat graphical
format that will make human interpretation easy
and paint a clear picture of company perception.

2 Related Work

 Alongside the rise in popularity of micro-
blogging platforms and social media, sentiment
analysis too has become a topic of increased
interest in machine learning and the NLP research
space as a whole. There has been substantial prior
research in sentiment analysis, especially in
domains consisting of larger content such as

movie reviews, product reviews and blog posts.
More recent advancements in sentiment analysis
have shifted focus to analyzing platforms like
Twitter in which posts contain less content.
Furthermore, micro-blogging platforms often
contain less grammatically accurate language,
slang, and the use of emotes and hashtags,
presenting new challenges to language processing.

A paper from the Department of Computer
Science at Cornell University in 2002 analyzed
the effectiveness of three machine learning
techniques on the IMDb archive of movie
reviews: Naïve Bayes, maximum entropy, and
support vector machines. The findings showed
that the three models were able to achieve 81%,
80.4%, and 82.9% accuracy respectively on
unigrams (Pang, Lee, 2002).

Building off the Cornell study, in 2009 a team
from Stanford University analyzed the sentiment
of tweets in relation to a query term. They
compared different machine learning algorithms
(Naïve Bayes, maximum entropy, and SVM)
using different features (unigrams, bigrams, both,
and parts of speech). For training data, they used
tweets that contained emoticons like ‘:)’ or ‘:(‘,
labeling those tweets as positive or negative
respectively. They found this training on
emoticons to be an effective method for distant
supervised learning. This data was compiled in the
Sentiment140 dataset (Go et al., 2009).

From the University of Indonesia in 2015,
researchers used Twitter data to analyze sentiment
toward mobile phone providers. They compared
Naïve Bayes against decision tree and SVM
classifiers, finding, as previous studies had, that
SVM performed the best. Using sentiments of
tweets, they measured Net Brand Reputation to
measure customer loyalty. They found that XL
Axiata had the best reputation out of the
companies they analyzed. They also created a live
dashboard of this NBR score along with common
keywords in tweets to help the Mobile Phone
Providers keep track of how the public perceived
their companies (Vidya et al., 2015).

In 2015 Kharde et. Al with the University of
Pune conducted an analysis of various methods
for sentiment analysis. In addition to the typical
machine learning approaches, they also evaluated
lexicon-based approaches including those based
on WordNet and corpus-based methods based on
Latent Semantic Analysis. These were found to
give fairly high accuracy in some cases and don’t

3

heavily rely on human labeled data. They also
found that bigram features tend to work best
compared with other features (Kharde et al.,
2015).

More recently, in 2017, researchers attempted
to analyze the opinion of Twitter users towards
different industries and consumer brands by using
sentiment analysis of their tweets. They used a
Long Short Term Memory implementation of a
Recurrent Neural Network. Moreover, they
analyzed the opinion of 19 million Twitter users
towards 62 popular industries, consisting of
12,898 enterprise and consumer brands, totaling a
dataset of 330 million tweets over one month.
They found that users tend to feel most positive
towards manufacturing and most negative towards
service industries. They also concluded that users
tend to be more positive or negative with regards
to a brand than in other niche spaces on Twitter
(Hu et al., 2017)

Lastly, a group of researchers from the
Association for Computational Linguistics
analyzed target-dependent Twitter sentiment
classification in 2011. Different from other
sentiment classification approaches, they used a
target-dependent system in which they considered
subjects of tweets that were implicitly related to a
company. According to their experimental results,
target-dependent classifiers significantly
outperformed previous target-independent models.
Furthermore, they utilized a graph-based
optimization approach to take tweets related to a
given tweet into consideration. They found that
graph-based optimization significantly improves
sentiment analysis as well (Jiang et al., 2011).

3 Data Selection

In our preliminary search for datasets of Tweets,
we looked for two main criteria: Tweet sentiment
must be target-dependent as well as effectively
annotated and preprocessed. We included only
datasets with target-dependent sentiment
annotation to align with the aim of our overall
project, which is of course to perform Tweet
sentiment analysis based on a query. Additionally,
it was important to us that candidate datasets were
annotated well with clear and accessible methods
to indicate polarity.
Based on these principles, our research led to a
handful of strong potential datasets divided into
two categories:

1. Sector or company-specific Twitter
sentiments such as select Kaggle datasets on
US Airlines and Apple Computers

2. Broader Kaggle datasets containing
Twitter sentiments across a multitude of
products, brands, and companies

3.1 Sentiment140

For training purposes, we decided to utilize the
second option of broader datasets including
Twitter sentiments regarding multiple companies,
specifically the Sentiment140 dataset on Kaggle.
We reasoned that company or sector-specific data
likely contains vocabulary and sentiment
“buzzwords” more specific to that company or
industry than others. Seeing as our project goal is
to allow for users to query across sectors,
products, and companies, we believe the larger,
more general Sentiment140 dataset provides the
most appropriate data.

In addition, several aspects of the
Sentiment140 dataset make it advantageous for
our purposes. First, it is significantly larger than
the narrower datasets, containing 1.6 million
Tweets compared to the ~3800 and ~14,600
Tweets contained in the Apple Computers and US
Airlines datasets. We believe this gives us a
greater ability to evaluate sentiment of Tweets
from a wide range of queries.

Moreover, the Tweets contained in
Sentiment140 are each annotated with polarity
ranging from negative (0) to neutral (2) to positive
(4) with respect to a query term, and the dataset is
in *.csv format with fields including target
(polarity), Tweet ID, Tweet timestamp, query,
Tweet owner, and Tweet ext. These attributes all
fit our needs well regarding training our model.

One typical example from our dataset is the
following entry:

[0, 2055843801 Sat Jun 06 10:03:24 PDT
2009, NO_QUERY, EmptyIsAwesome,
@google Why does it take so long to get a
check from you? You're like the alcoholic
Uncle that mails my bday check 2 weeks late].

This data point is a prime candidate for training
our system. We see a customer’s apparent reaction
to the company Google with a negative sentiment
label. Due to the meticulous data parsing,
datapoints like these are easily integrated into our
system.

4

Figure 1: Classification system pipeline

3.2 US Airline Sentiment

Though we have selected the broader
Sentiment140 dataset for training purposes, we
believe the sector and company specific datasets
are still valuable for our project. To simulate
domain-specific testing (such as tweets about a
specific company, product, or industry), we utilize
the US airline twitter sentiment dataset. This
dataset contains around 14,000 tweets already
annotated with various fields like id, sentiment
label, target airline, username, tweet text, etc. For
our purposes, we only use the text and sentiment
label fields. A typical example is as follows:

[…, negative, …, Virgin America, …, jnardino,
…., @VirginAmerica seriously would pay $30
a flight for seats that didn't have this playing.]

For additional processing, as sentiment is labeled
with a string, we convert this to numerical values:
0 for negative, 2 for neutral, and 4 for positive.

4 Methodology

At a high level, the end goal of our program is to
take a user query consisting of a company name
or product, retrieve relevant tweets over a certain
time frame, and then classify the tweets as
positive, neutral, or negative so that we can see
how the perception of the target changes over
time. The formulation and execution of our
system can be divided into three core components:
the training of our machine learning model,
testing, and the retrieval and classification of new
tweet data via user-interface.

4.1 Training and Model Selection

As mentioned previously, we used the
Sentiment140 dataset to train our system.
However, we only used a subset of 4,000 tweets
with an even class distribution so as not to skew
evaluation metrics. Since BERT requires
significant computing overhead, it was necessary
to use a relatively small amount of training data
for model selection.

For preprocessing the data, we sequentially
applied tokenization, stopword removal, and
stemming. To do so we utilized Python’s NLTK
library which provided useful methods. NLTK
was able to specially tokenize “@” and “#”
characters used for twitter handles and hashtags.
NLTK also provided a straightforward stopword

removal method as well as a Port Stemmer
method. It is important to note that preprocessing
was not used with BERT because BERT requires
raw text for its own tokenization.

Furthermore, we decided to implement three
feature extraction methods: raw term frequency,
tf-idf, and BERT embeddings. The raw tf and tf-
idf matrices were generated with sklearn’s
CountVectorizer and TfidfVectorizer methods,
respectively. We were able to generate a vanilla
BERT model using PyTorch and HuggingFace’s
transformers, as laid out in “A Visual Notebook to
Using BERT for the First Time” and “Text
Classification with BERT in PyTorch”.

We then used the resulting matrices to train
three classifiers: Naïve Bayes Complement,
Linear SVM, and Logistic classification, each of
which is provided by sklearn. We then proceeded
to use all combinations of feature extraction
methods and classifiers with the exception of
Naïve Bayes-BERT embeddings; negative
embeddings prevent the model from working
properly, and the Naïve Bayesian assumption of
independence invariant would be violated,
rendering the model inappropriate.

It is here that we should note our shortcomings
in working with BERT. We have written code to
fine-tune and optimize BERT-Base on the
Sentiment140 dataset using PyTorch, but we did
not have the necessary computing power to run it
readily available to us. Furthermore, we looked
into alternatives such as using CUDA toolkit or
PyTorch on a cloud computing resource such as
AWS but lacked the resources and ample time to
implement such features. Given the immense
computing overhead required to use our own
BERT implementation end-to-end, we resorted to
using PySentimiento for testing and for our front-
end web application that necessitates rapid
classification based on user input. PySentimiento
is a library with a pre-trained BERT model for
sentiment analysis of tweets, generated using
similar methods as we would have done given
more computational resources and time.

5

Figure 2: This graph shows average sentiment by date
given query "nestle" and period of one week

Figure 3: This graph shows the accuracy of feature
extraction and classifier combinations over a subset
of the training data

4.2 Testing and Evaluation Methods

We used 5-fold cross-validation to evaluate the
performance of combinations of feature
extraction methods and classifiers on a 4,000-
tweet subset of the training data. Furthermore, we
used accuracy as our preferred metric; accuracy is
an appropriate metric in this case since there are
even class distributions in the training data.
Following the training of our system and
evaluation of our systems on the training data, we
used a 2,000-tweet subset of the US airline dataset
to evaluate performance on new domain-specific
tweets. We measured the performance of a term
frequency-Naïve Bayes model and PySentimiento
and generated results in a formatted table.
PySentimiento performed multiclass classification
(0-negative, 2-neutral, 4-positive), and Naïve
Bayes performed binary classification (0-negtive,
4-positive). We used F1-score as the preferred
performance metric in this case due to the uneven
class distribution in the subset of test data.
Following our evaluation, we have the optimal
system to use for our front-end web application.

4.3 Application

After our model evaluation, we used Flask to
build a web app with a user-friendly interface.
After the user inputs a target query and a
requested time frame, the application retrieves
relevant Tweets via the Twitter API and classifies
them. Subsequently, the app uses the
classifications to generate a line graph displaying
the change in sentiment over the requested time
period. An example of such a generated line graph

is displayed in Figure 2. The application can also
display graphs depicting tweet counts by category
(positive, neutral, negative) and tweet counts by
date. Given our standard API license, our system
can only use tweets from the last 7 days, which,
while less than ideal, nevertheless is still valuable
to companies.

5 Results

The results from our 5-fold cross-validation
evaluation on training data are displayed in Figure
3 below:

From the graph displayed above, it is evident that
models using BERT embeddings clearly
outperformed those using raw term frequency or
tf-idf for feature extraction. The best performing
model, yielding an accuracy of 0.76, utilized
BERT embeddings in conjunction with the logistic
model. However, BERT embeddings and a linear
SVM classifier yielded an accuracy of 0.74 – only
a difference of 0.02. The lowest performing model
consisted of raw term frequency in combination
with a linear SVM classifier, yielding 0.67
accuracy. Similar to BERT models, tf and tf-idf
models’ accuracy varied by at most 0.02 when
paired with different classifiers. This suggests
feature extraction methods contribute to a
system’s performance more than the classifier.

Figures 4 and 5 display the results from testing
a tf-Naïve Bayes system and PySentimiento on
2,000 tweets from the US airline dataset,
respectively. While not a perfectly designed test,
we can still expect relatively similar results in
other domain-specific applications as this

6

Figure 4: This table shows Naive Bayes'
performance on 2,000 tweets from the US airline
dataset

Figure 5: This table shows PySentimiento's
performance on 2,000 tweets from the US ariline
dataset

simulates the retrieval process for getting new
tweets about a specific topic which the models
were not trained on. Looking at the macro-
averaged F1-scores for each system, we can see
that PySentimiento outperforms Naïve Bayes 0.75
to 0.54. Though a less relevant metric due to the
class imbalances, PySentimiento also
outperformed Naïve Bayes with respect to
weighted average as well.

It is interesting to note that both systems
performed best on negative tweets and performed
significantly worse on non-negative tweets(i.e.,
positive or neutral). Naïve Bayes produced an F1-
score of 0.62 for negative tweets and only 0.45 for
positive tweets. Moreover, PySentimiento
produced an F1-score of 0.86 for negative tweets,
0.60 for neutral tweets, and 0.79 for positive
tweets.

6 Conclusions

6.1 Findings

The first and foremost conclusion that can be
drawn from our project is that BERT feature
extraction significantly outperformed other
methods, while classifiers yielded similar results.
Thus, we should expect to see companies and
university courses adopt this cutting-edge
technology if they have not done so already. In

addition, our results suggest that our system had
more difficulty correctly classifying positive and
neutral tweets in comparison to negative tweets.
One hypothesized reason for this could be that
users may be more inclined to post about a
negative experience with a brand or company.
Consumers may treat a positive experience with a
company or product as the status-quo and only
take to Twitter to express their dissatisfaction
when their expectations are not met. Furthermore,
it’s possible that users may use stronger language
when expressing negativity.

6.2 Limitations

Given we are all undergraduate students working
from personal computers or laptops, there were
limiting factors to a project of this degree of
ambition. Firstly, we would have liked to use our
own BERT-Base implementation from end to end.
We believe running a more fine-tuned version of
BERT over the entirety of our dataset would lead
to better results. However, this would have taken
far too long on our hardware and given time
constraints we had to opt for alternative solutions.
Furthermore, we were only granted a standard
access level to the Twitter API. This only allowed
us to retrieve tweets from the last seven days and
also capped the amount of tweets we could
retrieve. Ideally, our front-end application could
display more tweets over a longer period of time
such as a year or quarter to better represent the
changes in sentiment.

6.3 Future Work

Firstly, our Flask application currently runs locally
on our machines. The apparent next step is to host
on it on AWS or another cloud service to
potentially provide companies with a valuable
resource. Once available in production
environments, we could receive user feedback and
iteratively update our application.

Subsequently, we would like to evaluate the
efficacy of our system after training on more
domain-specific datasets. We used a broad-topic
dataset, but individual companies would benefit
from the ability to narrow down the domain space
to more relevant tweets.

Furthermore, we think it would be valuable to
companies if we could expand our system to
include posts from other media platforms. While
Twitter is a user-dense platform that provides
valuable information, it is a small subset of the

7

totality of microblogging content available on the
internet. Our system could greatly be improved if
we could perform similar sentiment analysis on
YouTube video transcripts, YouTube comments,
Instagram posts, Instagram comments, etc.

Lastly, we think our system could be used to
benefit more than just companies; we would like
to expand our system to accommodate for public
institutions such as universities or even
individuals.

7 Contributions

First and foremost, all team members contributed
greatly to the development and success of our
system. As for the implementation of the system,
Jasper and William spearheaded the training of
our models. Alexander implemented the testing as
well as the generation of graphs to display
evaluation metrics and the performance of our
models. Furthermore, Timothy and Evan worked
in tandem to develop the Flask web application
and front end. As for the poster and reports, we
each took a section and helped with other parts of
the assignments if needed. This group worked
well together, and we are all satisfied with the
efforts put forth from one another; not all group
projects tend to go as smoothly.

References

Bo Pang, Lillian Lee, and Shivakumar
Vaithyanathan. 2002. B. Thumbs up?
Sentiment classification using machine
learning techniques. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 79–86.
https://www.cs.cornell.edu/home/llee/papers/se
nti ment.pdf

Guoning Hu, et al. 2017. Analyzing users’
sentiment towards popular consumer industries
and brands on Twitter. 2017 IEEE
International Conference on Data Mining
Workshops (ICDMW 2017).
arXiv:1709.07434v1 [cs.CL]

Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and
Tiejun Zhao. 2011. Target-dependent Twitter
Sentiment Classification. In Proceedings of the
49th Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies, pages 151–160, Portland,

Oregon, USA. Association for Computational
Linguistics.

Nur Azizah Vidya, Mohamad Ivan Fanany, and

Indra Budi. 2015. Twitter Sentiment to Analyze
Net Brand Reputation of Mobile Phone
Providers. Procedia Computer Science, 72:
519-526
https://www.sciencedirect.com/science/article/
pii/S1877050915036200?via%3Dihub

Alec Go, Richa Bhayani, and Lei Huang. 2009.

Twitter Sentiment Classification using Distant
Supervision. Stanford University Department
of Computer Science.
https://cs.stanford.edu/people/alecmgo/papers/
TwitterDistantSupervision09.pdf

Vishal Kharde and Sheetal Sonawane. 2016.

Sentiment Analysis of Twitter Data: A Survey
of Techniques. International Journal of
Computer Applications. 139:5-15.
https://arxiv.org/ftp/arxiv/papers/1601/1601.06
971.pdf

Jay Alammar. 2019. A Visual Guide to Using

BERT for the First Time. The Illustrated
Transformer.
http://jalammar.github.io/a-visual-guide-to-
using-bert-for-the-first-time/

Ruben Winastwan. 2021. Text Classification with

BERT in PyTorch. Towards Data Science.
https://towardsdatascience.com/text-
classification-with-bert-in-pytorch-
887965e5820f

Juan Manuel Pérez, Juan Carlos Giudici, and

Franco Luque. 2021. PySentimiento: A Python
Toolkit for Sentiment Analysis and Social NLP
Tasks.
https://github.com/pysentimiento/pysentimient
o

Twitter US Airline Sentiment.

https://www.kaggle.com/datasets/crowdflower/
twitter-airline-sentiment

Sentiment140. http://help.sentiment140.com/for-

students

https://www.cs.cornell.edu/home/llee/papers/sentiment.pdf
https://www.cs.cornell.edu/home/llee/papers/sentiment.pdf
https://www.cs.cornell.edu/home/llee/papers/sentiment.pdf
https://arxiv.org/abs/1709.07434v1
https://aclanthology.org/P11-1016
https://aclanthology.org/P11-1016
https://www.sciencedirect.com/science/article/pii/S1877050915036200?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1877050915036200?via%3Dihub
https://cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
https://cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
https://arxiv.org/ftp/arxiv/papers/1601/1601.06971.pdf
https://arxiv.org/ftp/arxiv/papers/1601/1601.06971.pdf
http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://towardsdatascience.com/text-classification-with-bert-in-pytorch-887965e5820f
https://towardsdatascience.com/text-classification-with-bert-in-pytorch-887965e5820f
https://towardsdatascience.com/text-classification-with-bert-in-pytorch-887965e5820f
https://github.com/pysentimiento/pysentimiento
https://github.com/pysentimiento/pysentimiento
https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment
http://help.sentiment140.com/for-students
http://help.sentiment140.com/for-students

	1 Project Description
	1.1 Problem
	1.2 Proposed Solution

	2 Related Work
	3 Data Selection
	3.1 Sentiment140
	3.2 US Airline Sentiment

	4 Methodology
	4.1 Training and Model Selection
	4.2 Testing and Evaluation Methods
	4.3 Application

	5 Results
	6 Conclusions
	6.1 Findings
	6.2 Limitations
	6.3 Future Work

	7 Contributions
	References

